【第一章:集合与函数概念】
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法
非负整数集(即自然数集)记作:N
正整数集:N*或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能
(1)A是B的一部分,;
(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实
例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
运算类型交集并集补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
【第二章:基本初等函数】
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
3.实数指数幂的运算性质
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
【第三章:第三章函数的应用】
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
1、做好预习,提出问题
预习时进行多次阅读课本,查阅相关资料,回答自己提出的问题,力争在老师讲新课前尽可能的掌握更多的知识,如果不能回答的问题可以在老师讲课中去解决。
2、学会听课
在初中的教学中老师经常会把一个知识点进行多次的讲解和通过大量的练习让学生去掌握,可是到高中以后,老师对于一个知识点就不会 再通过大量的练习来让学生去掌握,而是通过一些相关知识的讲解去引导学生明白这个知识是怎么来的,又如何用这个知识解答一些相关的疑惑,如果学生能明白的 话就能在自己的知识下通过课后的练习去巩固这些知识,同时学生也可以根据老师的引导去扩展知识。
3、先速度,再准确
做数学题的两个基本指标是快和准。在解决快和准这一对矛盾问题时,不妨先求快,再求准。自己计时做题,在规定时间内完成,然后自我改卷评分。先求“快”,力求做完,再求“准”。很多高考数学做不完,就是平时缺少这种高强度训练的结果。要知道,在高考中,“时间就意味着胜利”。
积分公式有哪些呢,高数常用的积分公式有什么呢,下面小编为大家提供常用的积分公式大全,仅供大家参考。
很多孩子都抱怨:数学难学!学数学真苦真累,成天泡在题海中,成绩还是不理想。高考就让这数学拖后腿了。下面有途高考网小编整理了《高中数学没学好最...
数学对于不少学生来说是一件头疼的事,上课听不明白,做题又不会,那怎么办才好呢?下面有途高考网小编整理了《如何学好高中数学 数学学习方法》,希...
1/sinx不定积分是ln|cscx - cotx| + C。微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,...
线性代数tr(trace)是矩阵对角线上各元素的和。线性代数是数学的一个分支,它的研究对象是向量、向量空间(或称线性空间)、线性变换和有限维...
只有一个。同济《线性代数》(第五版)第61页明确说明:一个矩阵的行最简形矩阵是“唯一确定”的!行最简形矩阵,是指线性代数中的某一类特定形式的...
高等数学a类是理工科本科各专业学生的一门公共必修的重要基础理论课,主要偏向于理工科的知识结构范围;高等数学b类是生物、化学相关本科专业学生的...
数学主观题的题型有简答题、应用题等。主观题也称自由应答型试题。此类试题对于考查考生的语言表达能力、思维创新能力等方面有独到的功能,但评分容易...
cscx不定积分是ln|tan(x/2)|+C。在直角三角形中,斜边与某个锐角的对边的比值叫做该锐角的余割,也就是cscx。余割与正弦的比值...
很多小伙伴们在上学的时候数学都不怎么好,那么高三数学不好要怎么补救呢?下面是小编整理的相关信息,感兴趣的小伙伴们快来查阅吧。
等差数列是常见的一种数列。那等差数列公式通项公式?下面,就跟小编一起来了解一下吧。
等比数列前n项和公式是怎么推导的?想必许多同学对这个问题存有疑惑。下面,就跟小编一起来看看吧。
很多小伙伴都会学到等比数列前n项和,那么它的公式是什么,如何运用呢?下面是小编整理的相关信息,感兴趣的小伙伴们快来查阅吧。
泰勒公式展开式都有哪些?下面,小编整理了一些常见的泰勒公式展开式,希望对你们有帮助。
等比数列的前n项和公式是什么?相信有些同学对这个问题还存有疑惑。下面,就跟小编一起来了解一下吧。