证法一:先证明个引理
f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)
证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0
因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)
所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)
反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)
因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f'(x)=H(x0)
所以f(x)在点x0可导,且f'(x0)=H(x0)
引理证毕。
设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)
证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)
又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)
于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)
因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且
F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)
证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)*(du/dx)
证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α(lim(Δu->0)α=0)
当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu
但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。
又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得
dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx
又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0
则lim(Δx->0)α=0
最终有dy/dx=(dy/du)*(du/dx)
积分公式有哪些呢,高数常用的积分公式有什么呢,下面小编为大家提供常用的积分公式大全,仅供大家参考。
很多孩子都抱怨:数学难学!学数学真苦真累,成天泡在题海中,成绩还是不理想。高考就让这数学拖后腿了。下面有途高考网小编整理了《高中数学没学好最...
数学对于不少学生来说是一件头疼的事,上课听不明白,做题又不会,那怎么办才好呢?下面有途高考网小编整理了《如何学好高中数学 数学学习方法》,希...
1/sinx不定积分是ln|cscx - cotx| + C。微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,...
线性代数tr(trace)是矩阵对角线上各元素的和。线性代数是数学的一个分支,它的研究对象是向量、向量空间(或称线性空间)、线性变换和有限维...
只有一个。同济《线性代数》(第五版)第61页明确说明:一个矩阵的行最简形矩阵是“唯一确定”的!行最简形矩阵,是指线性代数中的某一类特定形式的...
高等数学a类是理工科本科各专业学生的一门公共必修的重要基础理论课,主要偏向于理工科的知识结构范围;高等数学b类是生物、化学相关本科专业学生的...
数学主观题的题型有简答题、应用题等。主观题也称自由应答型试题。此类试题对于考查考生的语言表达能力、思维创新能力等方面有独到的功能,但评分容易...
cscx不定积分是ln|tan(x/2)|+C。在直角三角形中,斜边与某个锐角的对边的比值叫做该锐角的余割,也就是cscx。余割与正弦的比值...
很多小伙伴们在上学的时候数学都不怎么好,那么高三数学不好要怎么补救呢?下面是小编整理的相关信息,感兴趣的小伙伴们快来查阅吧。
等差数列是常见的一种数列。那等差数列公式通项公式?下面,就跟小编一起来了解一下吧。
等比数列前n项和公式是怎么推导的?想必许多同学对这个问题存有疑惑。下面,就跟小编一起来看看吧。
很多小伙伴都会学到等比数列前n项和,那么它的公式是什么,如何运用呢?下面是小编整理的相关信息,感兴趣的小伙伴们快来查阅吧。
泰勒公式展开式都有哪些?下面,小编整理了一些常见的泰勒公式展开式,希望对你们有帮助。
等比数列的前n项和公式是什么?相信有些同学对这个问题还存有疑惑。下面,就跟小编一起来了解一下吧。