二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应的横线上.
三、解答题:(共5小题,共70分;要求写出必要的文字说明,解题过程和演算步骤)
18.(12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90% 的把握认为“生产能手与工人所在的年龄组有关”?
附:x2= P(x2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
[选修4-4:坐标系与参数方程]
[选修4-5:不等式选讲]
河北2019年单招理科数学模拟试题系列一参考答案
一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.
二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应的横线上.
三、解答题:(共5小题,共70分;要求写出必要的文字说明,解题过程和演算步骤)
18.(12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90% 的把握认为“生产能手与工人所在的年龄组有关”?
附:x2= P(x2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
【考点】BO:独立性检验的应用.
【分析】(1)根据分层抽样,求得样本中有25周岁以上组工人60名,25周岁以下组工人40人,由频率分布直方图日平均生产件数不足60件的工人中25周岁以上组有3人,25周岁以下组有2人,随机抽取2人,求得所有可能的结果,根据古典概型公式求得至少抽到一名“25周岁以下组”工人的概率;
(2)据2×2列联表,代入求临界值的公式,求出观测值,利用观测值同临界值表进行比较,K2≈1.786<2.706,没有90%的把握认为“生产能手与工人所在的年龄组有关”.
【解答】解:(1)由已知得:样本中有25周岁以上组工人60名,25周岁以下组工人40人,
所以样本中日平均生产件数不足60件的工人中25周岁以上组有60×0.05=3人,分别记为:A1,A2,A3,
25周岁以下组有工人40×0.05=2人,分别记为B1,B2,
从中随机抽取2人,所有可能的结果共10种,他们分别是(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B2),(A3,B2),(B1,B2),
[选修4-4:坐标系与参数方程]
【点评】本题考查直线与曲线的极坐标方程的求法,考查三角形的面积的求法,考查参数方程、直角坐标方程的互化、三角函数性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
[选修4-5:不等式选讲]